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Subdivision schemes are used to generate smooth curves by iteratively refining an initial control 
polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points 
on each edge of the current polygon and connect them to get the refined polygon, thus cutting 
off the corners of the current polygon. While de Boor (1987) shows that this process always 
converges to a Lipschitz continuous limit curve, no matter how the points on each edge are 
chosen, Gregory and Qu (1996) discover that the limit curve is continuously differentiable under 
certain constraints. We extend these results and show that the limit curve can even be curvature 
continuous for specific sequences of cut ratios.

1. Introduction

Given a sequence of initial points 𝑝0
𝑖
∈ℝ2, 𝑖 = 0, … , 𝑛 +1, we consider the general corner cutting scheme defined by the subdivision 

rules

𝑝𝑘+12𝑖 = (1 − 𝛼𝑘
𝑖
)𝑝𝑘

𝑖
+ 𝛼𝑘

𝑖
𝑝𝑘
𝑖+1, 𝑝𝑘+12𝑖+1 = 𝛽𝑘

𝑖
𝑝𝑘
𝑖
+ (1 − 𝛽𝑘

𝑖
)𝑝𝑘

𝑖+1 (1)

for 𝑘 = 0, 1, 2, … and 𝑖 = 0, … , 2𝑘𝑛, where

𝛼𝑘
𝑖
> 0, 𝛽𝑘

𝑖
> 0, 1 − 𝛼𝑘

𝑖
− 𝛽𝑘

𝑖
> 0. (2)

Denoting by 𝑃𝑘 the polygonal chain that is formed by connecting the points 𝑝𝑘0 , … , 𝑝𝑘
2𝑘𝑛+1

with line segments, the corner cutting 
scheme (1) for creating 𝑃𝑘+1 from 𝑃𝑘 can be understood as follows. We first generate the points 𝑝𝑘+12𝑖 and 𝑝𝑘+12𝑖+1 by trisecting each line 
segment 

[
𝑝𝑘
𝑖
, 𝑝𝑘

𝑖+1
]

of 𝑃𝑘 in the ratio 𝛼𝑘
𝑖
∶ 1 − 𝛼𝑘

𝑖
− 𝛽𝑘

𝑖
∶ 𝛽𝑘

𝑖
. We then keep the central pieces 

[
𝑝𝑘+12𝑖 , 𝑝𝑘+12𝑖+1

]
, 𝑖 = 0, … , 2𝑘𝑛 of the trisected 

line segments and connect them with new line segments 
[
𝑝𝑘+12𝑖−1, 𝑝

𝑘+1
2𝑖

]
, 𝑖 = 1, … , 2𝑘𝑛, which cut off the corners of 𝑃𝑘 (see Fig. 1). Since 

the cut ratios 𝛼𝑘
𝑖

and 𝛽𝑘
𝑖

may depend on both 𝑘 and 𝑖, this scheme is non-uniform in general.

Note that scheme (1) can also be applied to a closed initial control polygon with 𝑛 vertices 𝑝01, … , 𝑝0
𝑛

by simply setting 𝑝00 = 𝑝0
𝑛

and 
𝑝0
𝑛+1 = 𝑝01 and making sure that 𝛼𝑘0 = 𝛼𝑘

2𝑘𝑛
and 𝛽𝑘0 = 𝛽𝑘

2𝑘𝑛
for 𝑘 ≥ 0, so that the first and the last segment of each 𝑃𝑘 are identical and 

trisected in the same ratio.

Uniform corner cutting schemes with 𝛼𝑘
𝑖
= 𝛽𝑘

𝑖
= 𝜔 > 0 for all 𝑘 and 𝑖 date back to the work of de Rham (1947a,b), who studies 

the case 𝜔 = 1
3 and proves that the sequence (𝑃𝑘) converges to a differentiable limit curve 𝑃 = lim𝑘→∞ 𝑃𝑘. He later generalizes this 

✩ Editor: Johannes Wallner.

* Corresponding author.
Available online 15 October 2024
0167-8396/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: kai.hormann@usi.ch (K. Hormann), claudio.mancinelli@unige.it (C. Mancinelli).

https://doi.org/10.1016/j.cagd.2024.102392

Received 17 June 2024; Received in revised form 24 September 2024; Accepted 1 October 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:kai.hormann@usi.ch
mailto:claudio.mancinelli@unige.it
https://doi.org/10.1016/j.cagd.2024.102392
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2024.102392&domain=pdf
https://doi.org/10.1016/j.cagd.2024.102392
http://creativecommons.org/licenses/by/4.0/


Computer Aided Geometric Design 114 (2024) 102392K. Hormann and C. Mancinelli

Fig. 1. The corner cutting scheme (1) creates the polygonal chain 𝑃𝑘+1 from 𝑃𝑘 by first trisecting each line segment [𝑝𝑘
𝑖
, 𝑝𝑘

𝑖+1

]
of 𝑃𝑘 in the ratio 𝛼𝑘

𝑖
∶ 1 − 𝛼𝑘

𝑖
− 𝛽𝑘

𝑖
∶ 𝛽𝑘

𝑖

to give the new points 𝑝𝑘+12𝑖 and 𝑝𝑘+12𝑖+1 , and then replacing each corner [𝑝𝑘+12𝑖−1, 𝑝𝑘𝑖 , 𝑝𝑘+12𝑖

]
with the line segment [𝑝𝑘+12𝑖−1, 𝑝𝑘+12𝑖

]
.

Fig. 2. Initial data, data generated by the first three subdivision steps, limit curve, and signed curvature of the limit curve (from left to right) for the uniform corner 
cutting scheme with 𝜔 = 1

4
(top) and the non-uniform corner cutting scheme with cut ratios in (5) (bottom).

result (de Rham, 1956) and shows that the limit curve 𝑃 is continuous (𝐶0) for any 𝜔 < 1
2 and continuously differentiable (𝐶1) for 

any 𝜔 ≤ 1
3 . He also discovers that 𝑃 is a piecewise quadratic curve for 𝜔 = 1

4 (see Fig. 2, top), a fact that was independently observed 
by Chaikin (1974) and proven by Riesenfeld (1975), who more specifically notes that the limit curve is the quadratic B-spline with 
control points 𝑝00, … , 𝑝0

𝑛+1 and uniform knots (−2, −1, … , 𝑛 + 2). For the asymmetric setting, where 𝛼𝑘
𝑖
= 𝛼 > 0 and 𝛽𝑘

𝑖
= 𝛽 > 0 for all 

𝑘 and 𝑖, de Rham (1959) further proves that 𝑃 is 𝐶0, if 𝛼 + 𝛽 < 1 and 𝐶1, if 2𝛼 + 𝛽 ≤ 1 and 𝛼 + 2𝛽 ≤ 1.

Gregory and Qu (1996) generalize de Rham’s results to the non-uniform setting, where the cut ratios may depend on 𝑘 and 𝑖, and 
show that the limit curve is 𝐶0, if

𝛼 > 0, 𝛽 > 0, 𝛼 + 𝛽 < 1, (3)

and 𝐶1, if

𝛼 > 0, 𝛽 > 0, 2𝛼 + 𝛽 < 1, 𝛼 + 2𝛽 < 1, (4)

where

𝛼 = lim
𝑘→∞

min
𝑖
𝛼𝑘
𝑖
, 𝛼 = lim

𝑘→∞
max
𝑖

𝛼𝑘
𝑖
, 𝛽 = lim

𝑘→∞
min
𝑖
𝛽𝑘
𝑖

𝛽 = lim
𝑘→∞

max
𝑖

𝛽𝑘
𝑖
.

Even more general corner cutting processes were studied by de Boor, who proves that they always work in the sense that the 
sequence of generated polygonal chains converges uniformly to a Lipschitz continuous curve (de Boor, 1987). Moreover, he shows 
that the limit curve is 𝐶1 if all the corners of the polygonal chain flatten out in the limit (de Boor, 1990), similar to how de Rham 
(1947a,b) establishes the tangent continuity of the limit curve in the symmetric uniform case with 𝜔 = 1

3 , and presents an example 
to illustrate that this condition is not necessary. Paluszny et al. (1997) improve these results by providing a sufficient and necessary 
condition for a corner cutting process to generate a 𝐶1 limit curve and by pointing out that condition (4) is not necessary. More recent 
work analyses non-uniform corner cutting schemes with local tension parameters (Fang et al., 2017) and for generating exponential 
B-splines (Jeong et al., 2021), and in both cases the limit curves are shown to be 𝐶1 .

1.1. Contribution

So far, there exists no corner cutting scheme that generates curvature continuous (𝐺2) limit curves. The goal of this paper is to 
2

derive such schemes. For example, the non-uniform scheme with cut ratios
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Fig. 3. Notation used in Proposition 1 (left) and Proposition 2 (right).

𝛼𝑘
𝑖
=

⎧⎪⎪⎨⎪⎪⎩

1
6 , if 𝑘 = 0,

1
4 , if 𝑗𝑘

𝑖
= 0,

𝜐(−𝑗𝑘
𝑖
), if 𝑗𝑘

𝑖
= −2𝑘−1,

𝜔(𝑗𝑘
𝑖
), otherwise,

𝛽𝑘
𝑖
=

⎧⎪⎪⎨⎪⎪⎩

1
6 , if 𝑘 = 0,

1
4 , if 𝑗𝑘

𝑖
= 0,

𝜐(−𝑗𝑘
𝑖
), if 𝑗𝑘

𝑖
= −2𝑘−1,

𝜔(−𝑗𝑘
𝑖
), otherwise.

(5)

for 𝑘 ≥ 0 and 𝑖 = 0, … , 2𝑘𝑛, where

𝑗𝑘
𝑖
=
(
(𝑖+ 2𝑘−1) mod 2𝑘

)
− 2𝑘−1 (6)

and

𝜐(𝑗) = 6𝑗2 − 6𝑗 + 1
2(3𝑗 − 2)(4𝑗 − 1)

, 𝜔(𝑗) = (6𝑗2 − 6𝑗 + 1)(2𝑗 + 1)
4(3𝑗2 − 1)(4𝑗 − 1)

, (7)

generates 𝐺2 limit curves (see Fig. 2, bottom). In Section 2 we explain how to derive the cut ratios in (5), and we extend this basic 
scheme in two different directions in Sections 3 and 4.

2. The basic scheme

The reason why the non-uniform corner cutting scheme with cut ratios in (5) generates 𝐺2 limit curves is rather simple: the limit 
curve is the 𝐶2 cubic B-spline 𝐵∶ [0, 2𝑛] →ℝ2 with 2𝑛 + 3 control points

𝑝00,
1
2 (𝑝

0
0 + 𝑝01), 𝑝01,

1
2 (𝑝

0
1 + 𝑝02), 𝑝02, ⋯ 𝑝0

𝑛
,

1
2 (𝑝

0
𝑛
+ 𝑝0

𝑛+1), 𝑝0
𝑛+1 (8)

and uniform knots (−3, −2, … , 2𝑛 +3). To prove this property, we recall an important feature of any corner cutting algorithm, namely 
that the limit curve is tangent to all line segments of the polygonal chain 𝑃𝑘 at all levels 𝑘. In turn, this implies that every point 𝑝𝑘

𝑖

is the intersection of two lines that are tangent to the limit curve. Before applying this observation to our basic scheme, let us first 
study such intersection points in general.

Proposition 1. Given a differentiable parametric planar curve 𝐹 ∶ ℝ →ℝ2 and some 𝑡 ∈ℝ, the intersection point 𝑠ℎ of the lines tangent to 
the curve at 𝐹 (𝑡) and 𝐹 (𝑡 + ℎ) for any ℎ ≠ 0 (see Fig. 3, left) exists and can be expressed as

𝑠ℎ = 𝐹 (𝑡) + 𝜆ℎ𝐹
′(𝑡), 𝜆ℎ =

det
(
𝐹 (𝑡+ ℎ) − 𝐹 (𝑡), 𝐹 ′(𝑡+ ℎ)

)
det

(
𝐹 ′(𝑡), 𝐹 ′(𝑡+ ℎ)

) , (9)

as long as the two tangent lines are not parallel.

Proof. If the two tangent lines are not parallel, then det
(
𝐹 ′(𝑡), 𝐹 ′(𝑡 +ℎ)

)
≠ 0 and there exist 𝜆ℎ, 𝜇ℎ ∈ℝ, such that 𝑠ℎ = 𝐹 (𝑡) +𝜆ℎ𝐹

′(𝑡)
and 𝑠ℎ = 𝐹 (𝑡 + ℎ) + 𝜇ℎ𝐹

′(𝑡 + ℎ). Therefore,

𝜆ℎ𝐹
′(𝑡) = 𝐹 (𝑡+ ℎ) − 𝐹 (𝑡) + 𝜇ℎ𝐹

′(𝑡+ ℎ)

and further

det
(
𝜆ℎ𝐹

′(𝑡), 𝐹 ′(𝑡+ ℎ)
)
= det

(
𝐹 (𝑡+ ℎ) − 𝐹 (𝑡) + 𝜇ℎ𝐹

′(𝑡+ ℎ), 𝐹 ′(𝑡+ ℎ)
)
,

which, after solving for 𝜆ℎ, gives (9), because det
(
𝐹 ′(𝑡 + ℎ), 𝐹 ′(𝑡 + ℎ)

)
= 0. □

Proposition 2. Given a differentiable parametric planar curve 𝐹 ∶ ℝ →ℝ2 and some 𝑡 ∈ℝ and assuming that the intersection points 𝑠−2ℎ, 
𝑠−ℎ, 𝑠ℎ, 𝑠2ℎ of the tangent line at 𝐹 (𝑡) with the tangent lines at 𝐹 (𝑡 − 2ℎ), 𝐹 (𝑡 − ℎ), 𝐹 (𝑡 + ℎ), 𝐹 (𝑡 + 2ℎ) exist uniquely and that 𝑠−2ℎ ≠ 𝑠2ℎ
(see Fig. 3, right), 𝑠−ℎ and 𝑠ℎ can be expressed as affine combinations of 𝑠−2ℎ and 𝑠2ℎ,

𝑠−ℎ = (1 − 𝛼) 𝑠−2ℎ + 𝛼 𝑠2ℎ, 𝑠ℎ = 𝛽 𝑠−2ℎ + (1 − 𝛽) 𝑠2ℎ,
3

where
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Fig. 4. Bézier control points 𝑐𝑗𝑚 , 𝑚 = 0, 1, 2, 3 of the cubic pieces 𝐶𝑗 of the limit curve for 𝑗 = 2𝑖 and 𝑗 = 2𝑖 + 1 (left) and simplified notation for the first piece of the 
limit curve (right).

𝛼 =
𝜆−ℎ − 𝜆−2ℎ
𝜆2ℎ − 𝜆−2ℎ

, 𝛽 =
𝜆2ℎ − 𝜆ℎ

𝜆2ℎ − 𝜆−2ℎ
.

Proof. By (9), the intersection points 𝑠−2ℎ, 𝑠−ℎ, 𝑠ℎ, 𝑠2ℎ are the images of 𝜆−2ℎ, 𝜆−ℎ, 𝜆ℎ, 𝜆2ℎ under the affine map 𝜙(𝜆) = 𝐹 (𝑡) +𝜆𝐹 ′(𝑡). 
The statement then follows from the fact that

𝜆−ℎ = (1 − 𝛼)𝜆−2ℎ + 𝛼 𝜆2ℎ, 𝜆ℎ = 𝛽 𝜆−2ℎ + (1 − 𝛽)𝜆2ℎ,

which can be verified easily. □

Now it is time to go back to the limit curve of our basic scheme, the uniform cubic B-spline 𝐵 with control points in (8). Converting 
this curve to piecewise Bézier form (Goldman, 2003, Section 7.6.3.1), we find that the control points 𝑐𝑗0 , 𝑐

𝑗

1, 𝑐
𝑗

2, 𝑐
𝑗

3 of its 2𝑛 cubic pieces 
𝐶𝑗 ∶ [𝑗, 𝑗 + 1] →ℝ2, 𝑗 = 0, … , 2𝑛 − 1 are

𝑐2𝑖0 = 1
2 (𝑝

0
𝑖
+ 𝑝0

𝑖+1), 𝑐2𝑖+10 = 1
12 (𝑝

0
𝑖
+ 10𝑝0

𝑖+1 + 𝑝0
𝑖+2),

𝑐2𝑖1 = 1
3 (𝑝

0
𝑖
+ 2𝑝0

𝑖+1), 𝑐2𝑖+11 = 1
6 (5𝑝

0
𝑖+1 + 𝑝0

𝑖+2),

𝑐2𝑖2 = 1
6 (𝑝

0
𝑖
+ 5𝑝0

𝑖+1), 𝑐2𝑖+12 = 1
3 (2𝑝

0
𝑖+1 + 𝑝0

𝑖+2),

𝑐2𝑖3 = 1
12 (𝑝

0
𝑖
+ 10𝑝0

𝑖+1 + 𝑝0
𝑖+2), 𝑐2𝑖+13 = 1

2 (𝑝
0
𝑖+1 + 𝑝0

𝑖+2),

for 𝑖 = 0, … , 𝑛 − 1 (see Fig. 4, left). Note that

𝑐2𝑖1 = 1
2 (𝑐

2𝑖
0 + 𝑐2𝑖2 ), 𝑐2𝑖3 = 1

2 (𝑐
2𝑖
2 + 𝑐2𝑖+11 ) = 𝑐2𝑖+10 , 𝑐2𝑖+12 = 1

2 (𝑐
2𝑖+1
1 + 𝑐2𝑖+13 )

and that the cut ratios in (5) for 𝑘 = 0 are chosen such that

𝑐2𝑖2 = 𝑝12𝑖+1, 𝑐2𝑖+11 = 𝑝12𝑖+2.

Let us now focus on the first piece of the limit curve and omit the piece index 𝑗 = 0 for simplicity. That is, we consider the cubic 
Bézier curve 𝐶 ∶ [0, 1] →ℝ with control points

𝑐0 =
1
2 (𝑝

1
0 + 𝑝11), 𝑐1 =

1
2 (𝑐0 + 𝑐2), 𝑐2 = 𝑝11, 𝑐3 =

1
2 (𝑝

1
1 + 𝑝12), (10)

shown in Fig. 4 (right). As 𝐶 is tangent to the line segments 
[
𝑝10, 𝑝

1
1
]

and 
[
𝑝11, 𝑝

1
2
]

at its endpoints, we observe that 𝑝11 is the intersection 
point of the tangent lines at 𝐶(0) and 𝐶(1). More generally, we will see that the points 𝑝𝑘

𝑖
generated by the corner cutting scheme with 

cut ratios in (5) are the intersection points of lines tangent to 𝐶 at certain dyadic points, but we first need to simplify the statement 
of Proposition 1 for this specific curve 𝐶 .

Corollary 3. Given the cubic Bézier curve 𝐶 ∶ [0, 1] →ℝ with control points in (10) and some 𝑡 ∈ [0, 1], the intersection point 𝑠ℎ of the lines 
tangent to the curve at 𝐶(𝑡) and 𝐶(𝑡 + ℎ) for any ℎ ≠ 0 with 𝑡 + ℎ ∈ [0, 1] exists and can be expressed as

𝑠ℎ = 𝐶(𝑡) + 𝜆ℎ𝐶
′(𝑡), 𝜆ℎ =

ℎ(3𝑡+ 2ℎ)
3(2𝑡+ ℎ)

, (11)

as long as 𝑝00, 𝑝01, and 𝑝02 are not collinear.

Proof. By the properties of Bézier curves (Goldman, 2003, Section 5.6.2),

𝐶 ′(𝑡) = 3(𝑐1 − 𝑐0)(1 − 𝑡)2 + 6(𝑐2 − 𝑐1)(1 − 𝑡)𝑡+ 3(𝑐3 − 𝑐2)𝑡2,
4

𝐶 ′′(𝑡) = 6(𝑐2 − 2𝑐1 + 𝑐0)(1 − 𝑡) + 6(𝑐3 − 2𝑐2 + 𝑐1)𝑡,
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Fig. 5. Notation used in Corollary 4.

𝐶 ′′′(𝑡) = 6(𝑐3 − 3𝑐2 + 3𝑐1 − 𝑐0),

and after substituting 𝑐1 =
1
2 (𝑐0 + 𝑐2), we find that

𝐶 ′(𝑡) = 3
2 (𝑐2 − 𝑐0) +

1
2 𝑡

2𝐶 ′′′(𝑡),

𝐶 ′′(𝑡) = 𝑡𝐶 ′′′(𝑡),

𝐶 ′′′(𝑡) = 6(𝑐3 − 𝑐2) − 3(𝑐2 − 𝑐0).

(12)

As 𝐶 is a cubic curve, we have, by Taylor expansion,

𝐶(𝑡+ ℎ) = 𝐶(𝑡) + ℎ𝐶 ′(𝑡) + 1
2ℎ

2𝐶 ′′(𝑡) + 1
6ℎ

3𝐶 ′′′(𝑡)

= 𝐶(𝑡) + ℎ𝐶 ′(𝑡) + 1
6 (3𝑡+ ℎ)ℎ2𝐶 ′′′(𝑡)

and

𝐶 ′(𝑡+ ℎ) = 𝐶 ′(𝑡) + ℎ𝐶 ′′(𝑡) + 1
2ℎ

2𝐶 ′′′(𝑡)

= 𝐶 ′(𝑡) + 1
2 (2𝑡+ ℎ)ℎ𝐶 ′′′(𝑡).

Inserting both into the formula for 𝜆ℎ in (9) and abbreviating 𝐶 ′(𝑡), 𝐶 ′′(𝑡), 𝐶 ′′′(𝑡) by 𝐶 ′, 𝐶 ′′, 𝐶 ′′′, we get

𝜆ℎ =
det

(
ℎ𝐶 ′ + 1

6 (3𝑡+ ℎ)ℎ2𝐶 ′′′,𝐶 ′ + 1
2 (2𝑡+ ℎ)ℎ𝐶 ′′′)

det
(
𝐶 ′,𝐶 ′ + 1

2 (2𝑡+ ℎ)ℎ𝐶 ′′′
) =

1
6

(
3(2𝑡+ ℎ) − (3𝑡+ ℎ)

)
ℎ2 det(𝐶 ′,𝐶 ′′′)

1
2 (2𝑡+ ℎ)ℎdet(𝐶 ′,𝐶 ′′′)

,

which simplifies to the expression for 𝜆ℎ in (11) after cancelling ℎ ≠ 0 and det(𝐶 ′, 𝐶 ′′′). The latter is valid, because (10) and (12)

imply that

det(𝐶 ′,𝐶 ′′′) = 9det(𝑐2 − 𝑐0, 𝑐3 − 𝑐2) =
9
4 det

(
𝑝11 − 𝑝10, 𝑝

1
2 − 𝑝11

)
,

which vanishes if and only if 𝑝00, 𝑝01, and 𝑝02 are collinear. Note that the conditions on 𝑡 and ℎ guarantee that (2𝑡 + ℎ) ≠ 0, so that 𝜆ℎ
is finite. □

Corollary 4. Given the cubic Bézier curve 𝐶 ∶ [0, 1] →ℝ with control points in (10) and assuming that 𝑝00, 𝑝
0
1, and 𝑝02 are not collinear, the 

intersection point 𝑠𝑘
𝑖

of the tangent lines at 𝐶
(
𝑡𝑘−1
𝑖−1

)
and 𝐶

(
𝑡𝑘−1
𝑖

)
, where 𝑡𝑘

𝑖
= 𝑖∕2𝑘, is identical to the point 𝑝𝑘

𝑖
generated by the corner cutting 

scheme with cut ratios in (5) for 𝑘 ≥ 1 and 𝑖 = 1, … , 2𝑘−1 (see Fig. 5).

Proof. We first note that all intersection points exist by Corollary 3. We then prove the statement by induction over 𝑘 and recall that 
the base case (𝑘 = 1, 𝑖 = 1) was already observed above (see Fig. 4, right). For the inductive step, we use Proposition 2 with ℎ = 1∕2𝑘
and 𝑡 = 𝑡𝑘−1

𝑖
= 2𝑖ℎ, hence

𝜆−2ℎ = −2(3𝑖− 2)
3(2𝑖− 1)

ℎ, 𝜆−ℎ = −2(3𝑖− 1)
3(4𝑖− 1)

ℎ, 𝜆ℎ =
2(3𝑖+ 1)
3(4𝑖+ 1)

ℎ, 𝜆2ℎ =
2(3𝑖+ 2)
3(2𝑖+ 1)

ℎ,

by (11), to conclude that

𝑠𝑘+12𝑖 = (1 − 𝛼)𝑝𝑘
𝑖
+ 𝛼𝑝𝑘

𝑖+1, 𝑠𝑘+12𝑖+1 = 𝛽𝑝𝑘
𝑖
+ (1 − 𝛽)𝑝𝑘

𝑖+1,

for 𝑖 = 1, … , 2𝑘−1 − 1, where

𝛼 =
𝜆−ℎ − 𝜆−2ℎ =

− (3𝑖−1)
(4𝑖−1) +

(3𝑖−2)
(2𝑖−1) = 𝜔(𝑖), 𝛽 =

𝜆2ℎ − 𝜆ℎ =
(3𝑖+2)
(2𝑖+1) −

(3𝑖+1)
(4𝑖+1) = 𝜔(−𝑖),
5

𝜆2ℎ − 𝜆−2ℎ (3𝑖+2)
(2𝑖+1) +

(3𝑖−2)
(2𝑖−1)

𝜆2ℎ − 𝜆−2ℎ (3𝑖+2)
(2𝑖+1) +

(3𝑖−2)
(2𝑖−1)
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which are equal to 𝛼𝑘
𝑖

and 𝛽𝑘
𝑖

in (5), because 𝑗𝑘
𝑖
= 𝑖.

It remains to show the statement for 𝑝𝑘+11 and 𝑝𝑘+1
2𝑘

. We start with 𝑝𝑘+11 . On the one hand, using ℎ = 1∕2𝑘 and 𝑡 = 0 in Corollary 3, 
we find that 𝑠𝑘1 = 𝐶(0) + 𝜆2ℎ𝐶

′(0) and 𝑠𝑘+11 = 𝐶(0) + 𝜆ℎ𝐶
′(0), hence

𝑠𝑘+11 = (1 − 𝜇)𝐶(0) + 𝜇𝑠𝑘1 = (1 − 𝜇)𝑐0 + 𝜇𝑝𝑘1 , 𝜇 =
𝜆ℎ

𝜆2ℎ
= 1

2
.

On the other hand, since 𝛼𝑘0 = 𝛽𝑘0 = 1
4 for 𝑘 ≥ 1 implies 𝑐0 =

1
2 (𝑝

𝑘
0 + 𝑝𝑘1), we have

𝑝𝑘+11 = 𝛽𝑘0 𝑝
𝑘
0 + (1 − 𝛽𝑘0 )𝑝

𝑘
1 = (1 − 1

2 )𝑐0 +
1
2𝑝

𝑘
1

and therefore 𝑝𝑘+11 = 𝑠𝑘+11 . Similarly, using ℎ = 1∕2𝑘 and 𝑡 = 1 in Corollary 3, we get

𝑠𝑘+1
2𝑘

= (1 − 𝜇)𝐶(1) + 𝜇𝑠𝑘
2𝑘−1

= (1 − 𝜇)𝑐3 + 𝜇𝑝𝑘
2𝑘−1

, 𝜇 =
𝜆−ℎ
𝜆−2ℎ

= (3 − 2ℎ)(1 − ℎ)
(2 − ℎ)(3 − 4ℎ)

,

and since 𝛼𝑘
2𝑘−1

= 𝛽𝑘
2𝑘−1

= 𝜐(2𝑘−1) for 𝑘 ≥ 1 implies 𝑐3 =
1
2 (𝑝

𝑘

2𝑘−1
+ 𝑝𝑘

2𝑘−1+1
), we have

𝑝𝑘+1
2𝑘

= (1 − 𝛼𝑘
2𝑘−1

)𝑝𝑘
2𝑘−1

+ 𝛼𝑘
2𝑘−1

𝑝𝑘
2𝑘−1+1

= (1 − 2𝜐(2𝑘−1))𝑝𝑘
2𝑘−1

+ 2𝜐(2𝑘−1)𝑐3

and consequently 𝑝𝑘+1
2𝑘

= 𝑠𝑘+1
2𝑘

, because

𝜐(2𝑘−1) = 𝜐( 1
2ℎ ) =

6
4ℎ2 − 6

2ℎ + 1

2(− 4
2ℎ + 1)(− 3

2ℎ + 2)
= 3 − 6ℎ+ 2ℎ2

2(2 − ℎ)(3 − 4ℎ)
= 1 − 𝜇

2
. □

To extend Corollary 4 to the other cubic pieces 𝐶𝑚 of the B-spline 𝐵, observe that the points 𝑝𝑘
𝑖

corresponding to 𝐶𝑚 are those 
with indices 𝑘 ≥ 1 and 𝑖 = 2𝑘−1𝑚 + 𝑙 for 𝑙 = 1, … , 2𝑘−1. If 𝑚 is even, then any such 𝑖 is mapped to the local index 𝑗𝑘

𝑖
in (6) exactly 

as in the case 𝑚 = 0, namely 𝑗𝑘
𝑖
= 𝑙 for 𝑙 = 1, … , 2𝑘−1 − 1 and 𝑗𝑘

𝑖
= −2𝑘−1 for 𝑙 = 2𝑘−1, and the proof remains the same, because 

(𝛼𝑘
𝑖
, 𝛽𝑘

𝑖
) = (𝛼𝑘

𝑙
, 𝛽𝑘

𝑙
). The situation is slightly different for odd 𝑚, since 𝑐𝑚2 = 1

2 (𝑐
𝑚
1 + 𝑐𝑚3 ) in this case, while 𝑐𝑚1 = 1

2 (𝑐
𝑚
0 + 𝑐𝑚2 ) for even 

𝑚. We thus need to “mirror” the indices and ensure that the cut ratios (𝛼𝑘
𝑖
, 𝛽𝑘

𝑖
) are identical to (𝛽𝑘

2𝑘−1−𝑙
, 𝛼𝑘

2𝑘−1−𝑙
). But this is exactly 

the reason for the definition of 𝑗𝑘
𝑖
. If 𝑚 is odd, then 𝑖 is mapped to 𝑗𝑘

𝑖
= 𝑙 − 2𝑘−1, so that 𝛼𝑘

𝑖
= 𝜔(𝑗𝑘

𝑖
) = 𝜔(−(2𝑘−1 − 𝑙)) = 𝛽𝑘

2𝑘−1−𝑙
and 

similarly for 𝛽𝑘
𝑖
.

We are now ready to wrap up our results and prove that our basic scheme generates 𝐺2 limit curves.

Theorem 5. The sequence of polygons (𝑃𝑘) generated by the corner cutting scheme with cut ratios in (5) converges to the uniform cubic 
B-spline 𝐵 with control points in (8) and thus to a curvature continuous limit curve.

Proof. On the one hand, it is straightforward to show that 𝜐(𝑗) and 𝜔(𝑗) in (7) are strictly increasing for 𝑗 ≥ 1 with 𝜐(1) = 1
6 , 𝜔(1) = 1

8 , 
and lim𝑗→∞ 𝜐(𝑗) = lim𝑗→∞𝜔(𝑗) = 1

4 . Similarly, 𝜔(−𝑗) is strictly decreasing with 𝜔(−1) = 13
40 and lim𝑗→∞𝜔(−𝑗) = 1

4 . Therefore, 𝛼 =
𝛽 = 1

8 and 𝛼 = 𝛽 = 13
40 , so that the Gregory–Qu condition (4) is satisfied and the limit curve 𝑃 = lim𝑘→∞ 𝑃𝑘 is guaranteed to be 𝐶1.

On the other hand, it follows from Corollary 4 that 𝑃𝑘 for 𝑘 ≥ 1 agrees with the first cubic piece 𝐶0 of the limit curve 𝐵 at the 
dyadic points 𝑡𝑘−1

𝑖
for 𝑖 = 0, … , 2𝑘−1 and, as explained above, the same holds for the other cubic pieces 𝐶𝑗 , 𝑗 = 1, … , 2𝑛 − 1 and the 

dyadic points 𝑡𝑘−1
𝑖

for 𝑖 = 2𝑘−1, … , 2𝑘𝑛. Therefore, 𝑃 agrees with 𝐵 on the dense set of dyadic points in [0, 2𝑛], and as 𝑃 is continuous, 
it must be identical to 𝐵, which is 𝐺2, because it is 𝐶2 and regular.

Note that the case of collinear points 𝑝00, 𝑝01, and 𝑝02 that we excluded in Corollary 4 can be dealt with by a continuity argument. 
Just move 𝑝01 by some 𝜀 > 0 in a direction that is not parallel to 𝑝02 − 𝑝00, so that the three points are not collinear anymore and the 
convergence of (𝑃𝑘) to 𝐵 follows as above, and then let 𝜀 → 0. □

We can further show that the convergence order of our basic scheme is quadratic.

Proposition 6. The distance between 𝐵 and 𝑃𝑘 is on the order of ℎ2, where ℎ = 1∕2𝑘.

Proof. Without loss of generality, we focus again on the first piece of 𝐵, that is, the cubic Bézier curve 𝐶 with control points in (10), 
and more specifically on the interval [𝑡, 𝑡 + ℎ], where 𝑡 = 𝑡𝑘−1

𝑖−1 ∈ [0, 1) for some 𝑘 ≥ 1 and some 𝑖 ∈ {1, … , 2𝑘−1} and ℎ = 1∕2𝑘. From 
Corollaries 3 and 4 we know that

ℎ(3𝑡+ 4ℎ) [ 4 ]

6

𝑝𝑘
𝑖
= 𝐶(𝑡) + 𝜆2ℎ𝐶

′(𝑡), 𝜆2ℎ = 3(𝑡+ ℎ)
∈ ℎ, 3ℎ ,
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Fig. 6. After an initial corner cutting step with cut ratios 𝛼0
𝑖
= 𝛼𝑖 and 𝛽0

𝑖
= 𝛽𝑖 (cf. Fig. 1), we divide the line segments [𝑝12𝑖 , 𝑝12𝑖+1] and [𝑝12𝑖+1, 𝑝12𝑖+2] of 𝑃1 in the ratios 

𝛾𝑖 ∶ 1 − 𝛾𝑖 and 𝛿𝑖+1 ∶ 1 − 𝛿𝑖+1 , respectively (left) and then define the control points 𝑐𝑗𝑚 , 𝑚 = 0, 1, 2, 3 of the cubic Bézier curves 𝐶𝑗 (right).

and that the line segment from 𝐶(𝑡) to 𝑝𝑘
𝑖

is a part of 𝑃𝑘 (cf. Fig. 5). For any 𝑠 ∈ [𝑡, 𝑡 + ℎ], consider the distance between 𝐶(𝑠) and the 
point (1 − 𝜇)𝐶(𝑡) + 𝜇𝑝𝑘

𝑖
on 𝑃𝑘, where 𝜇 = (𝑠 − 𝑡)∕𝜆2ℎ ∈ [0, ℎ∕𝜆2ℎ] ⊂ [0, 1]. By Taylor expansion,

𝐶(𝑠) = 𝐶(𝑡+ 𝜇𝜆2ℎ) = 𝐶(𝑡) + 𝜇𝜆2ℎ𝐶
′(𝑡) +

(𝜇𝜆2ℎ)2

2
𝐶 ′′(𝑡) +

(𝜇𝜆2ℎ)3

6
𝐶 ′′′(𝑡),

and therefore

𝐶(𝑠) −
(
(1 − 𝜇)𝐶(𝑡) + 𝜇𝑝𝑘

𝑖

)
=

(𝜇𝜆2ℎ)2

2
𝐶 ′′(𝑡) +

(𝜇𝜆2ℎ)3

6
𝐶 ′′′(𝑡),

which is on the order of ℎ2, because 𝜆2ℎ is on the order of ℎ. By symmetry, we can similarly bound the distance between 𝐶(𝑠) for 
𝑠 ∈ [𝑡 + ℎ, 𝑡 + 2ℎ] and some point on 𝑃𝑘 between 𝑝𝑘

𝑖
and 𝐶(𝑡 + 2ℎ) = 𝐶(𝑡𝑘−1

𝑖
), thus covering the whole domain [0, 1] of 𝐶 . □

3. Curvature continuous cubic Bézier splines

While the basic scheme with cut ratios in (5) generates a uniform cubic B-spline in the limit, that is, a piecewise cubic 𝐶2 curve, 
we can modify it slightly, so that the sequence (𝑃𝑘) converges to a more general 𝐺2 cubic Bézier spline, also called 𝛾 -spline (Prautzsch 
et al., 2002, Section 7.3). To this end, suppose we are given 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖 with

𝛼𝑖 > 0, 𝛽𝑖 > 0, 𝛾𝑖 > 0, 1 − 𝛾𝑖 > 0, 1 − 𝛼𝑖 − 𝛽𝑖 > 0, (13)

for 𝑖 = 0, … , 𝑛, and define

𝛿𝑖+1 =
𝛼𝑖+1(1 − 𝛾𝑖)(1 − 𝛼𝑖 − 𝛽𝑖) −

√
𝛼𝑖+1𝛽𝑖(1 − 𝛾𝑖)𝛾𝑖+1(1 − 𝛼𝑖 − 𝛽𝑖)(1 − 𝛼𝑖+1 − 𝛽𝑖+1)

𝛼𝑖+1(1 − 𝛾𝑖)(1 − 𝛼𝑖 − 𝛽𝑖) − 𝛽𝑖𝛾𝑖+1(1 − 𝛼𝑖+1 − 𝛽𝑖+1)
, (14a)

if the denominator 𝛼𝑖+1(1 − 𝛾𝑖)(1 − 𝛼𝑖 − 𝛽𝑖) − 𝛽𝑖𝛾𝑖+1(1 − 𝛼𝑖+1 − 𝛽𝑖+1) does not vanish, and otherwise

𝛿𝑖+1 =
1
2
, (14b)

for 𝑖 = 0, … , 𝑛 − 1. We now use 𝛼𝑖 and 𝛽𝑖 as cut ratios for the first step of the corner cutting scheme, resulting in the polygonal chain 
𝑃1 with points

𝑝12𝑖 = (1 − 𝛼𝑖)𝑝0𝑖 + 𝛼𝑖𝑝
0
𝑖+1, 𝑝12𝑖+1 = 𝛽𝑖𝑝

0
𝑖
+ (1 − 𝛽𝑖)𝑝0𝑖+1, (15)

for 𝑖 = 0, … , 𝑛. We then divide the line segments 
[
𝑝12𝑖, 𝑝

1
2𝑖+1

]
in the ratios 𝛾𝑖 ∶ 1 − 𝛾𝑖 and the line segments 

[
𝑝12𝑖+1, 𝑝

1
2𝑖+2

]
in the ratios 

𝛿𝑖+1 ∶ 1 − 𝛿𝑖+1 to define the points 𝑞0, … , 𝑞2𝑛 as (see Fig. 6, left)

𝑞2𝑖 = (1 − 𝛾𝑖)𝑝12𝑖 + 𝛾𝑖𝑝
1
2𝑖+1, 𝑞2𝑖+1 = (1 − 𝛿𝑖+1)𝑝12𝑖+1 + 𝛿𝑖+1𝑝

1
2𝑖+2 (16)

and consider the cubic Bézier spline 𝐵∶ [0, 2𝑛] → ℝ2 that consists of the 2𝑛 cubic pieces 𝐶𝑗 ∶ [𝑗, 𝑗 + 1] → ℝ2, 𝑗 = 0, … , 2𝑛 − 1 with 
control points

𝑐2𝑖0 = 𝑞2𝑖, 𝑐2𝑖+10 = 𝑞2𝑖+1,

𝑐2𝑖1 = 1
2 (𝑐

2𝑖
0 + 𝑐2𝑖2 ), 𝑐2𝑖+11 = 𝑝12𝑖+2,

𝑐2𝑖2 = 𝑝12𝑖+1, 𝑐2𝑖+12 = 1
2 (𝑐

2𝑖+1
1 + 𝑐2𝑖+13 ),

𝑐2𝑖3 = 𝑞2𝑖+1, 𝑐2𝑖+13 = 𝑞2𝑖+2,

(17)

for 𝑖 = 0, … , 𝑛 − 1 (see Fig. 6, right).
7

Proposition 7. The cubic Bézier spline 𝐵 with control points in (17) is curvature continuous.
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Proof. Since 𝑐2𝑖−11 , 𝑐2𝑖−12 , 𝑐2𝑖−13 = 𝑐2𝑖0 , 𝑐2𝑖1 , 𝑐2𝑖2 are collinear, it is clear that the cubic Bézier curves 𝐶2𝑖−1 and 𝐶2𝑖, for 𝑖 = 1, … , 𝑛, join 
curvature continuously with zero curvature (see Fig. 6, right). Moreover, for 𝑖 = 0, … , 𝑛 − 1, the curves 𝐶2𝑖 and 𝐶2𝑖+1 join tangent 
continuously (that is, 𝐺1), because 𝑐2𝑖2 , 𝑐2𝑖3 = 𝑐2𝑖+10 , 𝑐2𝑖+11 are collinear (see Fig. 6, right). To verify that the joint is also 𝐺2, we recall 
from Farin (2002, Section 11.2) that this is the case, if and only if 𝑟2 = 𝑟−𝑟+, where

𝑟 =
‖𝑐2𝑖3 − 𝑐2𝑖2 ‖‖𝑐2𝑖+11 − 𝑐2𝑖+10 ‖ =

𝛿𝑖+1
1 − 𝛿𝑖+1

,

𝑟− =
‖𝑐2𝑖2 − 𝑐2𝑖1 ‖‖𝑝0
𝑖+1 − 𝑐2𝑖2 ‖ =

1
2 (1 − 𝛾𝑖)(1 − 𝛼𝑖 − 𝛽𝑖)

𝛽𝑖
,

𝑟+ =
‖𝑐2𝑖+11 − 𝑝0

𝑖+1‖‖𝑐2𝑖+12 − 𝑐2𝑖+11 ‖ =
𝛼𝑖+1

1
2 𝛾𝑖+1(1 − 𝛼𝑖+1 − 𝛽𝑖+1)

.

Letting

𝜌 = 𝛼𝑖+1(1 − 𝛾𝑖)(1 − 𝛼𝑖 − 𝛽𝑖) and 𝜎 = 𝛽𝑖𝛾𝑖+1(1 − 𝛼𝑖+1 − 𝛽𝑖+1),

the 𝐺2 condition is thus satisfied, if and only if 𝛿𝑖+1 solves(
𝛿𝑖+1

1 − 𝛿𝑖+1

)2
= 𝜌

𝜎
⟺ (𝜌− 𝜎)𝛿2

𝑖+1 − 2𝜌𝛿𝑖+1 + 𝜌 = 0.

Note that 0 < 𝜌, 𝜎 < 1, because of (13). If 𝜌 = 𝜎, then the only solution is 𝛿𝑖+1 =
1
2 , as in (14b). Otherwise,

𝛿𝑖+1 =
𝜌−

√
𝜌𝜎

𝜌− 𝜎
or 𝛿𝑖+1 =

𝜌+
√
𝜌𝜎

𝜌− 𝜎
,

but only the first solution, which is the one in (14a), is guaranteed to be strictly between 0 and 1. Indeed, if 𝜎 < 𝜌, then 𝜎 <
√
𝜌𝜎 < 𝜌

and 0 < 𝜌−
√
𝜌𝜎

𝜌−𝜎 < 1, but 𝜌+
√
𝜌𝜎

𝜌−𝜎 > 1. Likewise, if 𝜌 < 𝜎, then 𝜌 <
√
𝜌𝜎 < 𝜎 and 0 < 𝜌−

√
𝜌𝜎

𝜌−𝜎 < 1, but 𝜌+
√
𝜌𝜎

𝜌−𝜎 < 0. □

The 𝐺2 cubic Bézier spline 𝐵 now turns out to be generated in the limit by the non-uniform corner cutting scheme with cut ratios

𝛼𝑘
𝑖
=

⎧⎪⎪⎨⎪⎪⎩

𝛼𝑖, if 𝑘 = 0,

1
2 𝛾𝑙𝑘𝑖 −1

, if 𝑗𝑘
𝑖
= 0,

2𝛿
𝑙𝑘
𝑖
𝜐(−𝑗𝑘

𝑖
), if 𝑗𝑘

𝑖
= −2𝑘−1,

𝜔(𝑗𝑘
𝑖
), otherwise,

𝛽𝑘
𝑖
=

⎧⎪⎪⎨⎪⎪⎩

𝛽𝑖, if 𝑘 = 0,

1
2 (1 − 𝛾

𝑙𝑘
𝑖
−1), if 𝑗𝑘

𝑖
= 0,

2(1 − 𝛿
𝑙𝑘
𝑖
)𝜐(−𝑗𝑘

𝑖
), if 𝑗𝑘

𝑖
= −2𝑘−1,

𝜔(−𝑗𝑘
𝑖
), otherwise.

(18)

for 𝑘 ≥ 0 and 𝑖 = 0, … , 2𝑘𝑛, where 𝑗𝑘
𝑖
, 𝜐(𝑗), and 𝜔(𝑗) are defined as in (6) and (7), respectively, and

𝑙𝑘
𝑖
= 𝑖− (𝑖 mod 2𝑘)

2𝑘
+ 1. (19)

Note that 𝑙𝑘
𝑖

is used in the definition of the cut ratios only if 𝑗𝑘
𝑖
= 0 or 𝑗𝑘

𝑖
= −2𝑘−1. The first case occurs if and only if 𝑖 = 2𝑘−1(2𝑚)

and corresponds to the repeated trisection of the initial line segments 
[
𝑝0
𝑚
, 𝑝0

𝑚+1
]
, 𝑚 = 0, … , 𝑛. In this case, 𝑙𝑘

𝑖
− 1 = 𝑚 and 𝛼𝑘

𝑖
, 𝛽𝑘

𝑖

are defined to clip off exactly half of the line segment to the left and to the right of 𝑞2𝑚, so that 𝑞2𝑚 keeps dividing the remaining 
line segment in the ratio 𝛾𝑚 ∶ 1 − 𝛾𝑚. Similarly, the second case, which happens if and only if 𝑖 = 2𝑘−1(2𝑚 + 1), corresponds to the 
line segment 

[
𝑝12𝑚+1, 𝑝

1
2𝑚+2

]
, 𝑚 = 0, … , 𝑛 − 1 and guarantees that 𝑞2𝑚+1 keeps dividing the remnants of this line segment in the ratio 

𝛿𝑚+1 ∶ 1 − 𝛿𝑚+1.

Theorem 8. The sequence of polygons (𝑃𝑘) generated by the corner cutting scheme with cut ratios in (18) converges to the cubic Bézier spline 
𝐵 with control points in (17) and thus to a curvature continuous limit curve.

Proof. We proceed as in the proof of Theorem 5 and first observe that

𝛼 =min
{ 1
8 ,

1
2 𝛾,

1
2𝛿

}
> 0, 𝛽 =min

{ 1
8 ,

1
2 (1 − 𝛾), 12 (1 − 𝛿)

}
> 0,

where

𝛾 = min
𝑖=0,…,𝑛

𝛾𝑖 > 0, 𝛾 = max
𝑖=0,…,𝑛

𝛾𝑖 < 1, 𝛿 = min
𝑖=1,…,𝑛

𝛿𝑖 > 0, 𝛿 = max
𝑖=1,…,𝑛

𝛿𝑖 < 1,
8

and
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Fig. 7. Limit curve and signed curvature of the limit curve for the non-uniform corner cutting scheme with cut ratios in (18) for different choices of 𝛼𝑖 , 𝛽𝑖 , and 𝛾𝑖 . The 
black curves are the limit curves of the basic scheme (cf. Fig. 2, bottom). (For interpretation of the colours in the figure(s), the reader is referred to the web version 
of this article.)

𝛼 =max
{ 13
40 ,

1
2 𝛾,

1
2 𝛿

}
<

1
2 , 𝛽 =max

{ 13
40 ,

1
2 (1 − 𝛾), 12 (1 − 𝛿)

}
<

1
2 .

Hence, while the Gregory–Qu condition (4) for 𝐶1 limit curves is not necessarily satisfied, the weaker condition (3) holds, and it is 
clear that the sequence (𝑃𝑘) converges to a 𝐶0 limit curve 𝑃 .

Similar to Corollary 4, one can then show that 𝑃 agrees with the Bézier spline 𝐵 at all dyadic points in [0, 2𝑛] and must therefore be 
identical to 𝐵. The only changes in the arguments used in the proof of Corollary 4 regard the case 𝑝𝑘+11 , where we now have (1 −𝛾0)𝛼𝑘0 =
𝛾0𝛽

𝑘
0 and therefore 𝑐0 = (1 − 𝛾0)𝑝𝑘0 + 𝛾0𝑝

𝑘
1 for 𝑘 ≥ 1, and the case 𝑝𝑘+1

2𝑘
, where we need to ensure that 𝑐3 = (1 − 𝛿1)𝑝𝑘2𝑘−1 + 𝛿1𝑝

𝑘

2𝑘−1+1
. 

But the latter is true, because (1 − 𝛿1)𝛼𝑘2𝑘−1 = 𝛿1𝛽
𝑘

2𝑘−1
for 𝑘 ≥ 1. □

Fig. 7 illustrates the effect of the shape parameters 𝛼𝑖 , 𝛽𝑖, and 𝛾𝑖. On the one hand, 𝛼𝑖 and 𝛽𝑖 can be used to pull the limit curve 
towards the corners of the initial control polygon 𝑃0 . For example, if we set 𝛾𝑖 =

1
2 and 𝛼𝑖 = 𝛽𝑖 = 𝜁 for all 𝑖 and some 𝜁 ∈ (0, 12 ), 

then we reproduce the limit curve of the basic scheme (see Fig. 2, bottom) for 𝜁 = 1
6 and get limit curves that are closer to 𝑃0 for 

𝜁 <
1
6 or further from 𝑃0 for 𝜁 > 1

6 (see Fig. 7, top left). On the other hand, 𝛾𝑖 specifies the point 𝑞2𝑖 at which the limit curve touches 
the initial control polygon. For example, if we set 𝛼𝑖 = 𝛽𝑖 =

1
6 and 𝛾𝑖 =

1
8 for all 𝑖, then the limit curve touches 𝑃0 at the points 

𝑞2𝑖 =
7
8𝑝

1
2𝑖 +

1
8𝑝

1
2𝑖+1 =

3
4𝑝

0
𝑖
+ 1

4𝑝
1
𝑖+1 (see Fig. 7, top right). While this restricts the touching points to be (strictly) between 𝑝12𝑖 and 

𝑝12𝑖+1, we can also force the curve to pass through any point 𝑞2𝑖 = (1 − 𝜁𝑖)𝑝0𝑖 + 𝜁𝑖𝑝
0
𝑖+1 that is (strictly) between 𝑝0

𝑖
and 𝑝0

𝑖+1 by setting 
𝛾𝑖 = 𝜁𝑖 ∈ (0, 1), 𝛼𝑖 =

1
2 𝜁𝑖, and 𝛽𝑖 =

1
2 (1 − 𝜁𝑖). For example, the curves in Fig. 7 (bottom right) touch 𝑃0 in the same points as the curves 

in Fig. 7 (top right), but the particularity of this second approach is that it gives 𝛿𝑖+1 =
1
2 for all 𝑖, hence the limit curve is guaranteed 

to touch the midpoints of the edges 
[
𝑝12𝑖+1, 𝑝

1
2𝑖+2

]
. The latter can more generally by achieved by setting 𝛾𝑖 = 𝛼𝑖∕(𝛼𝑖 + 𝛽𝑖) (e.g., the blue 

and the red curve in Fig. 7, bottom left), and of course it is possible to mix these effects, to choose 𝛼𝑖 and 𝛽𝑖 asymmetrically, and to 
let them depend on the index 𝑖. In all cases the signed curvature plot confirms the 𝐺2 continuity of the limit curve.

The Bézier spline 𝐵 with control points in (17) can also be expressed as a non-uniform 𝛾 -B-spline (Boehm, 1985; Prautzsch et al., 
2002, Section 7.4) 𝐷 ∶ [𝑢0, 𝑢2𝑛] → ℝ2 with knots 𝑢−3, 𝑢−2, … , 𝑢2𝑛+3, chosen such that the ratios of the knot distances Δ𝑗 = 𝑢𝑗+1 − 𝑢𝑗
for 𝑗 = −2, −1, … , 2𝑛 + 1 satisfy

Δ2𝑖
Δ2𝑖−1

=
1 − 𝛾𝑖

𝛾𝑖
,

Δ2𝑖+1
Δ2𝑖

=
1 − 𝛿𝑖+1
𝛿𝑖+1

, (20)

with arbitrarily chosen 𝛿0, 𝛿𝑛+1 ∈ (0, 1), 2𝑛 + 3 control points

𝑑2𝑖−1 = 𝑝0
𝑖
, 𝑖 = 0,… , 𝑛+ 1,

(21)
9

𝑑2𝑖 = (1 − 𝜏𝑖)𝑝0𝑖 + 𝜏𝑖𝑝
0
𝑖+1, 𝑖 = 0,… , 𝑛,
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Fig. 8. Limit curve and signed curvature of the limit curve for the non-uniform corner cutting scheme with cut ratios in (18) for different choices of 𝛼𝑖, 𝛽𝑖 , and 𝛾𝑖 , 
which all guarantee that the limit curve is a non-uniform cubic B-spline. The black curve is the limit curve of the basic scheme (cf. Fig. 2, bottom).

where 𝜏𝑖 = (1 + 𝛼𝑖 − 𝛽𝑖)∕2, and corresponding tension parameters1

𝜂2𝑖−1 =
2𝛼𝑖

𝛾𝑖(1 − 𝛼𝑖 − 𝛽𝑖)
⋅
1 − 𝛿𝑖

𝛿𝑖
, 𝜂2𝑖 = 1, 𝜂2𝑖+1 =

2𝛽𝑖
(1 − 𝛾𝑖)(1 − 𝛼𝑖 − 𝛽𝑖)

⋅
𝛿𝑖+1

1 − 𝛿𝑖+1
(22)

for 𝑖 = 0, … , 𝑛. Note that the definition of 𝛿𝑖+1 in (14) guarantees that the definitions of 𝜂2𝑖−1 for 𝑖 = 1, … , 𝑛 and 𝜂2𝑖+1 for 𝑖 = 0, … , 𝑛 −1
in (22) are equivalent, and that Δ−3 and Δ2𝑛+2 can be chosen arbitrarily. As remarked by Boehm (1985), a non-uniform 𝛾 -B-spline 
is a non-uniform B-spline, if and only if all tension parameters are equal to one. Hence, it follows from (22) that the corner cutting 
scheme with cut ratios in (18) generates a non-uniform cubic B-spline in the limit for certain choices of 𝛼𝑖 , 𝛽𝑖, and 𝛾𝑖 (see Fig. 8).

4. Piecewise rational limit functions

We can further extend our approach to generate piecewise rational 𝐺2 splines as limit curves. More precisely, let us define, for 
any 𝑟 ≥ 0, the rational functions 𝑅0, 𝑅1, 𝑅2 ∶ [0, 1] →ℝ,

𝑅0(𝑡) =
2𝑡− 𝑟𝑡+ 2𝑟
2𝑡− 2𝑟𝑡+ 2𝑟

(1 − 𝑡)2, 𝑅1(𝑡) =
4𝑡− 𝑟𝑡+ 3𝑟
2𝑡− 2𝑟𝑡+ 2𝑟

(1 − 𝑡)𝑡, 𝑅2(𝑡) =
2𝑡

2𝑡− 2𝑟𝑡+ 2𝑟
𝑡2,

which simplify to the quadratic Bernstein polynomials for 𝑟 = 0. Just like the latter, these functions are non-negative, form a partition 
of unity, and satisfy

𝑅0(0) = 1, 𝑅1(0) = 0, 𝑅2(0) = 0, 𝑅′
0(0) = −𝑅′

1(0), 𝑅′
2(0) = 0,

𝑅0(1) = 0, 𝑅1(1) = 0, 𝑅2(1) = 1, 𝑅′
0(1) = 0, 𝑅′

1(1) = −𝑅′
2(1).

It follows that the rational curve 𝑆(𝑡) =
∑2

𝑚=0 𝑠𝑚𝑅𝑚(𝑡) with control points 𝑠0, 𝑠1, 𝑠2 ∈ℝ2 has the endpoint interpolation property, is 
tangent to the control edges [𝑠0, 𝑠1] and [𝑠1, 𝑠2] at 𝑡 = 0 and 𝑡 = 1, respectively, and is contained in the convex hull of its control 
points. If 𝑟 > 0, then it is not hard to show that

𝑆′(0) = 3
2
(𝑠1 − 𝑠0), 𝑆′(1) = (𝑟+ 2)(𝑠2 − 𝑠1),

𝑆′′(0) = 1 − 𝑟

𝑟
(𝑠1 − 𝑠0), 𝑆′′(1) = 2(𝑟2 + 𝑟+ 1)(𝑠2 − 𝑠1) − (𝑟+ 2)(𝑠1 − 𝑠0)

and that the signed curvature of 𝑆 at the endpoints is

𝜅𝑆 (0) = 0, 𝜅𝑆 (1) =
det(𝑠1 − 𝑠0, 𝑠2 − 𝑠1)
(𝑟+ 2)‖𝑠2 − 𝑠1‖3 . (23)

For 𝑟 = 1, we note that 𝑅0 = 𝐵3
0 +

1
2𝐵

3
1 , 𝑅1 =

1
2𝐵

3
1 +𝐵3

2 , and 𝑅2 = 𝐵3
3 , where 𝐵3

𝑚
are the Bernstein polynomials of degree 3, and 

hence 𝑆(𝑡) is the cubic Bézier curve with control points 𝑠0, 12 (𝑠0 + 𝑠1), 𝑠1, 𝑠2 in this special case.

We now consider the spline 𝑆 ∶ [0, 2𝑛] →ℝ2 that consists of the 2𝑛 rational pieces 𝑆𝑗 ∶ [𝑗, 𝑗 + 1] →ℝ2, defined as

𝑆2𝑖(𝑡) =
2∑

𝑚=0
𝑠2𝑖
𝑚
𝑅𝑚(𝑡− 2𝑖), 𝑆2𝑖+1(𝑡) =

2∑
𝑚=0

𝑠2𝑖+1
𝑚

𝑅2−𝑚(2𝑖+ 2 − 𝑡)

with control points
10

1 As the name suggests, these tension parameters are commonly denoted by 𝛾𝑖 . Here we use 𝜂𝑖 instead, because 𝛾𝑖 is already used for some of our shape parameters.
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𝑠2𝑖0 = 𝑞2𝑖, 𝑠2𝑖+10 = 𝑞2𝑖+1,

𝑠2𝑖1 = 𝑝12𝑖+1, 𝑠2𝑖+11 = 𝑝12𝑖+2,

𝑠2𝑖2 = 𝑞2𝑖+1, 𝑠2𝑖+12 = 𝑞2𝑖+2,

(24)

for 𝑖 = 0, … , 𝑛 − 1, where 𝑝10, … , 𝑝12𝑛 and 𝑞1, … , 𝑞2𝑛 are defined as in (15) and (16). By the remark above, 𝑆 simplifies to the cubic 
Bézier spline 𝐵 with control points in (17) for 𝑟 = 1.

Proposition 9. The piecewise rational spline 𝑆 with control points in (24) is curvature continuous for any 𝑟 > 0.

Proof. Since 𝑠2𝑖−11 , 𝑠2𝑖−12 = 𝑠2𝑖0 , 𝑠2𝑖1 are collinear, it follows from (23) that the rational curves 𝑆2𝑖−1 and 𝑆2𝑖, for 𝑖 = 1, … , 𝑛, join 
curvature continuously with zero curvature. Moreover, for 𝑖 = 0, … , 𝑛 − 1, the curves 𝑆2𝑖 and 𝑆2𝑖+1 join with 𝐺1 continuity, because 
𝑠2𝑖1 , 𝑠2𝑖2 = 𝑠2𝑖+10 , 𝑠2𝑖+11 are collinear. To verify that the joint is also 𝐺2 , it suffices to recall from Proposition 7 that this is true for 𝑟 = 1
and from (23) that for any other 𝑟 > 0 the curvature of both 𝑆2𝑖 and 𝑆2𝑖+1 at the joint is just the curvature in the special case 𝑟 = 1, 
scaled by 3∕(𝑟 + 2). □

To derive the appropriate cut ratios of the non-uniform corner cutting scheme that generates 𝑆 in the limit, let us focus on the 
first piece of 𝑆 , namely the rational curve 𝑆(𝑡) =

∑2
𝑚=0 𝑠𝑚𝑅𝑚(𝑡) with control points 𝑠0 = 𝑞0, 𝑠1 = 𝑝11, 𝑠2 = 𝑞1. By Proposition 1, the 

lines tangent to 𝑆 at 𝑆(𝑡) and 𝑆(𝑡 + ℎ) intersect at 𝑆(𝑡) + 𝜆ℎ𝑆
′(𝑡) with

𝜆ℎ =
det

(
𝑆(𝑡+ ℎ) −𝑆(𝑡), 𝑆′(𝑡+ ℎ)

)
det

(
𝑆′(𝑡), 𝑆′(𝑡+ ℎ)

) .

By the partition of unity property,

𝑆(𝑡) = 𝑠1 + (𝑠0 − 𝑠1)𝑅0(𝑡) + (𝑠2 − 𝑠1)𝑅2(𝑡) 𝑆′(𝑡) = (𝑠0 − 𝑠1)𝑅′
0(𝑡) + (𝑠2 − 𝑠1)𝑅′

2(𝑡),

so that

𝜆ℎ =
(𝑅0(𝑡+ ℎ) −𝑅0(𝑡))𝑅′

2(𝑡+ ℎ) − (𝑅2(𝑡+ ℎ) −𝑅2(𝑡))𝑅′
0(𝑡+ ℎ)

𝑅′
0(𝑡)𝑅

′
2(𝑡+ ℎ) −𝑅′

2(𝑡)𝑅
′
0(𝑡+ ℎ)

,

which, after some simplifications, can be expressed as

𝜆ℎ =
ℎ(𝑡− 𝑟𝑡+ 𝑟)

(
(2𝑡− 2𝑟𝑡+ 3𝑟)𝑡+ (2𝑡− 2𝑟𝑡+ 2𝑟)ℎ

)
(2𝑡− 2𝑟𝑡+ 3𝑟)

(
(2𝑡− 2𝑟𝑡+ 2𝑟)𝑡+ (2𝑡− 2𝑟𝑡+ 𝑟)ℎ

) .
As in the proof of Corollary 4 and Theorem 8, it then follows that the corner cutting scheme generates the intersection points of the 
tangent lines at 𝑆

(
𝑡𝑘−1
𝑖−1

)
and 𝑆

(
𝑡𝑘−1
𝑖

)
as 𝑝𝑘

𝑖
for 𝑘 ≥ 1, if we use the cut ratios

𝛼𝑘
𝑖
=
𝜆−ℎ − 𝜆−2ℎ
𝜆2ℎ − 𝜆−2ℎ

, 𝛽𝑘
𝑖
=

𝜆2ℎ − 𝜆ℎ

𝜆2ℎ − 𝜆−2ℎ
with ℎ = 1

2𝑘
and 𝑡 = 2𝑖ℎ,

for 𝑖 = 1, … , 2𝑘−1 − 1, as well as

𝛼𝑘0 = 𝛾0
𝜆ℎ

𝜆2ℎ
, 𝛽𝑘0 = (1 − 𝛾0)

𝜆ℎ

𝜆2ℎ
with ℎ = 1

2𝑘
and 𝑡 = 0

and

𝛼𝑘
2𝑘−1

= 𝛿1
𝜆−2ℎ − 𝜆−ℎ

𝜆−2ℎ
, 𝛽𝑘

2𝑘−1
= (1 − 𝛿1)

𝜆−2ℎ − 𝜆−ℎ
𝜆−2ℎ

with ℎ = 1
2𝑘

and 𝑡 = 1.

Like before, the same cut ratios must be used for the points corresponding to the other pieces 𝑆𝑗 of 𝑆 with 𝑗 even, while they need 
to be mirrored for the pieces 𝑆𝑗 with 𝑗 odd. Moreover, the parameter 𝑟 can be replaced by a local parameter 𝑟𝑖+1 for every pair of 
pieces (𝑆2𝑖, 𝑆2𝑖+1), 𝑖 = 0, … , 𝑛 − 1. After simplification, this gives the cut ratios

𝛼𝑘
𝑖
=

⎧⎪⎪⎨⎪⎪⎩

𝛼𝑖, if 𝑘 = 0,

1
2 𝛾𝑙𝑘𝑖 −1

, if 𝑗𝑘
𝑖
= 0,

2𝛿
𝑙𝑘
𝑖
𝜐(−𝑗𝑘

𝑖
, 𝑙𝑘
𝑖
), if 𝑗𝑘

𝑖
= −2𝑘−1,

𝜔(𝑗𝑘
𝑖
, 𝑘, 𝑙𝑘

𝑖
), otherwise,

𝛽𝑘
𝑖
=

⎧⎪⎪⎨⎪⎪⎩

𝛽𝑖, if 𝑘 = 0,

1
2 (1 − 𝛾

𝑙𝑘
𝑖
−1), if 𝑗𝑘

𝑖
= 0,

2(1 − 𝛿
𝑙𝑘
𝑖
)𝜐(−𝑗𝑘

𝑖
, 𝑙𝑘
𝑖
), if 𝑗𝑘

𝑖
= −2𝑘−1,

𝜔(−𝑗𝑘
𝑖
, 𝑘, 𝑙𝑘

𝑖
), otherwise,

(25)

where

2(2 + 𝑟𝑙)𝑗2 − 6𝑗 + (2 − 𝑟𝑙)
11

𝜐(𝑗, 𝑙) =
2
(
(2 + 𝑟𝑙)𝑗 − 2

)(
4𝑗 − (2 − 𝑟𝑙)

)
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Fig. 9. Limit curve and signed curvature of the limit curve for the non-uniform corner cutting scheme with cut ratios in (25) for different choices of 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 , and 𝑟𝑖 . 
The black curve matches the green curve in Fig. 7 (bottom left).

and

𝜔(𝑗, 𝑘, 𝑙) =
(
2𝑘(6𝑗2 − 6𝑗 + 1)𝑟𝑙 + 4|𝑗|(2𝑗 − 1)(𝑗 − 1)(1 − 𝑟𝑙)

)(
2𝑘(2𝑗 + 1)𝑟𝑙 + 4|𝑗|(𝑗 + 1)(1 − 𝑟𝑙)

)
4
(
2𝑘(3𝑗2 − 1)𝑟𝑙 + 4|𝑗|(𝑗 + 1)(𝑗 − 1)(1 − 𝑟𝑙)

)(
2𝑘(4𝑗 − 1)𝑟𝑙 + 4|𝑗|(2𝑗 − 1)(1 − 𝑟𝑙)

) ,

and 𝑗𝑘
𝑖

and 𝑙𝑘
𝑖

are defined as in (6) and (19).

Fig. 9 illustrates the effect of the additional shape parameters 𝑟𝑖 . Setting all 𝑟𝑖 = 1 reproduces the Bézier splines from Section 3

in the limit, decreasing 𝑟𝑖 pushes the limit curve away from 𝑝12𝑖−1 and 𝑝12𝑖, and increasing 𝑟𝑖 has the opposite effect. As all 𝑟𝑖 →∞, 
the limit curve converges to 𝑃1, in contrast to the role of 𝛼𝑖 and 𝛽𝑖, which can be used to let the limit curve converge to 𝑃0 as all 
𝛼𝑖, 𝛽𝑖 → 0. Moreover, if 𝛼𝑖 = 𝛽𝑖 =

1
4 and 𝑟𝑖 → 0 for all 𝑖, then the limit curve converges to the quadratic B-spline (cf. Fig. 2, top) with 

only piecewise continuous curvature.

The rational spline 𝑆 with control points in (24) can also be expressed as a non-uniform rational 𝛾 -B-spline (Boehm, 1987) 
𝐷∶ [𝑢0, 𝑢2𝑛] →ℝ2 with knots 𝑢−3, 𝑢−2, … , 𝑢2𝑛+3, chosen such that the ratios of the knot distances Δ𝑗 = 𝑢𝑗+1−𝑢𝑗 for 𝑗 = −2, −1, … , 2𝑛 +
1 are as in (20), weights2

𝜈6𝑖−6 = 1, 𝜈6𝑖−5 =
2𝑟𝑖 + 1
3𝑟𝑖

, 𝜈6𝑖−4 =
𝑟𝑖 + 2
3𝑟𝑖

, 𝜈6𝑖−3 =
1
𝑟𝑖
, 𝜈6𝑖−2 =

𝑟𝑖 + 2
3𝑟𝑖

, 𝜈6𝑖−1 =
2𝑟𝑖 + 1
3𝑟𝑖

, 𝜈6𝑖 = 1

for 𝑖 = 1, … , 𝑛, control points as in (21), where

𝜏𝑖 =
1 + 𝛼𝑖 − 𝛽𝑖

2
+

1 − 𝛼𝑖 − 𝛽𝑖

2

(
2𝛾𝑖 − 1 +

(1 − 𝛾𝑖)2𝜈26𝑖−2 − 𝛾2
𝑖
𝜈26𝑖+2

(1 − 𝛾𝑖)𝜈26𝑖−2𝜈6𝑖+1 + 𝛾𝑖𝜈
2
6𝑖+2𝜈6𝑖−1

)

with 𝜈−2 =
𝑟0+2
3𝑟0

, 𝜈−1 =
2𝑟0+1
3𝑟0

, 𝜈6𝑛+1 =
2𝑟𝑛+1+1
3𝑟𝑛+1

, 𝜈6𝑛+2 =
𝑟𝑛+1+2
3𝑟𝑛+1

for any 𝑟0, 𝑟𝑛+1 > 0, and tension parameters

𝜂2𝑖−1 =
1

𝜈6𝑖−2
⋅

2𝛼𝑖
𝛾𝑖(1 − 𝛼𝑖 − 𝛽𝑖)

⋅
1 − 𝛿𝑖

𝛿𝑖
,

𝜂2𝑖 =
(1 − 𝛾𝑖)𝜈6𝑖−1 + 𝛾𝑖𝜈6𝑖+1

(1 − 𝛾𝑖)𝜈26𝑖−2𝜈6𝑖+1 + 𝛾𝑖𝜈
2
6𝑖+2𝜈6𝑖−1

,

𝜂2𝑖+1 =
1

𝜈6𝑖+2
⋅

2𝛽𝑖
(1 − 𝛾𝑖)(1 − 𝛼𝑖 − 𝛽𝑖)

⋅
𝛿𝑖+1

1 − 𝛿𝑖+1

for 𝑖 = 0, … , 𝑛. Clearly, if all 𝑟𝑖 are equal to one, then all weights 𝜈𝑗 are equal to one, and the limit curve is a non-rational 𝛾 -B-spline. 
Moreover, the limit curve is 𝐶2 if the tension parameters satisfy certain conditions (Boehm, 1987), that is, for specific choices of 𝛼𝑖 , 
𝛽𝑖, 𝛾𝑖, and 𝑟𝑖.

5. Conclusion

The primary objective of this paper is to demonstrate that non-uniform corner cutting is capable of producing limit curves that are 
smoother than those generated by uniform corner cutting. In this sense, it complements the work by Dyn et al. (2022), who obtain 
a similar result for interpolatory 2-point and 4-point schemes, albeit with an entirely different approach. One may object that the 
schemes presented above generate only curves for which an analytic parametric representation is available, but we recall that the 
theory of uniform subdivision, apart from the pioneering work by de Rham (1947a,b, 1956, 1959), has similar origins. In fact, the 
topic became popular only with Chaikin’s (re-)discovery of the corner cutting scheme for quadratic B-splines (Chaikin, 1974) and the 
subsequent generalization for obtaining uniform B-splines of arbitrary degree via subdivision (Lane and Riesenfeld, 1980), that is, 
with schemes that generate known limit curves.
12

2 These are the rational weights associated with the 6𝑛 + 1 Bézier control points of the 2𝑛 rational cubic pieces of 𝐷.
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However, we are aware of the fact that the real challenge lies in identifying non-uniform corner cutting schemes for curvature 
continuous limit curves that are not known a priori, and further exploration is needed to develop suitable tools for analysing such 
schemes, which go beyond the well-established methods of asymptotic equivalence (Dyn and Levin, 1995; Dyn et al., 2014), asymptotic 
similarity (Conti et al., 2015), and proximity (Wallner and Dyn, 2005; Wallner, 2006). Our first experiments in this direction indicate 
that this will be very challenging. Whereas the smoothness of uniform subdivision schemes is usually quite stable with respect to 
small modifications of the weights of the rules, as long as the weights continue to sum to one, it seems as if the curvature continuity 
of the limit curves obtained from the corner cutting schemes above is lost as soon as just a single cut ratio 𝛼𝑘

𝑖
or 𝛽𝑘

𝑖
is perturbed 

slightly. This shows that it is not sufficient to guarantee a certain limit behaviour of the cut ratios as 𝑘 →∞, but that most probably 
a more holistic condition needs to be satisfied, which involves the cut ratios for all 𝑘 and all 𝑖.
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